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The achievement of multifunctional molecular switches is of 0.3 015
paramount interest in the growing field of molecular electrohfts. <§ 010
Dipolar ruthenium(ll) ammine complexes of 4fipyridinium (bpy) 005

0.2 | :

ligands possess unique characteristics as multifunctional redox
switches? Actually, the reversible chemical oxidation of these 0 2 3
complexes is accompanied by a dramatic change of their linear 0.1
and nonlinear optical properties. While 'Reomplexes possess

distinct linear (absorption maxima in the 58640 nm region) and

nonlinear optical features associated with the their intense, low- 0.0
energy metal-to-ligand charge-transfer (MLCT) electronic transi-

tions, RW! analoQPes are transparent in .the Who.le V|§|ble r_eglon Figure 1. Absorption spectra df in the water phase=) before and (- - -)

and possess negligible second-order optical nonlineafityaddi- after 5 min of 254 nm irradiation. The inset shows the redox-switching of
tion, we have recently demonstrated that self-assembled monolayershe absorbance maximum (monitored at 580 nm) upon consecutive cycles
of these RU" complexes on an optically transparent metal electrode of 254 and 528 nm irradiation.

can be reversibly switched chemically.

Light is a very appealing trigger to switch molecular properties.
Its easy manipulation makes light-controlled molecular switches .
ideally suited to molecular electronié$ndeed, a large variety of benzene ) |
examples is reported in the literatdr&éhe goal of the present study {E

LCT

is the light-controlled, reversible redox switching of multifunctional ["E> //;""‘
detector

500 600 700 800
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Scheme 1

dipolar [RU""(NHsz)s-N-methyl-4,4-bipyridinium](PF), (1"/M)
complexe$. This represents a difficult task, because photoinduced
processes involving RU' ammine complexes are, in principle,
precluded due to their photolability. In fact, ®li ammine Scheme 2
complexes of pyridine and related ligands give photosubstitution photoreduction route
in both aqueous solution and nonaqueous solveAtsalogously, TEOA S
the direct or sensitized photoexcitationf leads to photodegra- \V*zmp e
dation® To circumvent this problem, we have thus explored f ‘%
alternative strategies. **znTPp znTPPd
We report here on the reversible redox photoswitchind'tf benzene \
complexes, which represents the first example of a multifunctional water / \‘
molecular switch involving dipolar metal complexes, having both NHRu"™ NHaJ.RU"
linear and nonlinear optical properties, exclusively controlled by [MJ I-M
light.® The approach is sketched in Scheme 1. It implies a two-
phase (water/benzene) system in whi¢H! salts are soluble only
in the water phase. Noteworthy features include (i) photooxidation \_
of 1" by a phenoxy radical generated upon 254 nm irradiation of H9 "~ prOH }‘m
phenol (PhOH) in the water phase; (ii) photoreductionl¥f at /I/ 2CIEIOH
water/benzene interface by irradiation at 528 nm of zinc tetraphenyl Ehatooxidation oute
porphyrin (ZnTPP) in the benzene phase. The above features, withinabsorption band is observed after 5 min of steady-state irradiation,
proper experimental conditions (vide infra), avoid either the direct according to the oxidation of! to the 1" counterpart. The
or sensitized photoexcitation df"" complexes and, hence, any photooxidation route can be explained through the mechanism
photodegradation. The processes involved in our proposed scheméllustrated in Scheme 2. It is well established that UV irradiation

PHOY PhOe+ H' + ey

are described as follows. of aqueous solutions of PhOH leads to the formation of hydrated
Photooxidation Route. This step was photoinitiated by PhOH  electrons (e, and phenoxy radicals (PR3 PhO offers ap-
(5 x 1073 M), which is in large excess with respect 1t (10°° propriate thermodynamic and kinetic prerequisites as oxidizing

M). Under these experimental conditions the 254 nm irradiation of species ofl". Actually, its reduction potentialEphopro = +
the water compartment leads to the selective excitation of PhOH, 0.72 V vs SCE}! higher than that o1" (E° ywn = 0.46 vs SCE},
which absorbs almost all incident photonrs96%), thus preventing  and its decay on a sufficiently long time scale (hundredgs)f?
any significant direct excitation df". make feasible the quenching of Phiy 1" through an electron-
As displayed in Figure 1, the disappearance of the MLCT optical transfer pathway. Moreover, the presence of an efficient scavenger
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ZnTPP* and TEOA not only prevents the potential back electron-
transfer processes but also restores the starting ZnTPP, thus
minimizing undesired side reactions.

The suitability of the proposed scheme to achieve the reversible
molecular switching ofl"" complexes was tested by consecutive
phototriggered redox cycles. As displayed in the inset of Figure 1,
the disappearance/restoration of the MLCT absorption band provides
direct evidence that a reversible redox switching occurs.

In summary, we have shown the first example of a molecular
switch of multifunctional dipolar (NB)sRU'""bpy complexes,
exclusively driven by light. The adopted strategy allowed the
photocontrolled redox switching of such photolabile systems,
otherwise not feasible by their direct or sensitized photoexcitation.
Such a strategy might represent a general method to accomplish
the redox switching of photolabile species. Moreover, the two-phase
approach is also of relevance in the perspective of photocontrolled,
RuU'" -based self-assembled monolayer molecular switéhes.
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Figure 2. Kinetic traces for the decay of Ph@bserved upon 266 nm
laser excitation of PhOH (¥ 10-3 M in aqueous solution) (a) in the absence
and (b) in the presence af (3 uM). The faster components of the decay
traces are due t&PhOH, whose absorption is superimposed to that of
PhO.15 The inset shows the plot for the quenching of Pib 1".

of hydrated electrons, such as 2-chloroethanol (2CIEt8H),
prevents the back reduction 8 during the steady-state illumina-
tion. Noteworthy, the electron transfer betweBhand PhO not
only switches off the MLCT optical absorption &f but also offers
the advantage of restoring the starting PhOH (see Schefife 2).

The proposed mechanism is substantiated by complementary.
nanosecond laser flash photolysis studies in which the BeCay
was directly monitored at 400 nm (Ph@bsorption maximum?

As shown in Figure 2, PhQs efficiently quenched by addition of
1", with a diffusion-controlled bimolecular rate constaky€ 8.5
x 10° Mt s71) (see inset Figure 2).

Finally, note that PhOH excited triplet stat&RhOH), also
generated upon UV irradiation, is unable to sensitize photoexcitation
of 1" despite the favorable energetiésin fact, under our
experimental conditiong§*PhOH is too short-lived (less tharyds)t
to be quenched byl". This is supported by the lack of any
significant effect ofL", up to 10> M, on the®*PhOH kinetic decay.

Photoreduction Route.Photoreduction o' was achieved by
528 nm irradiation of ZnTPP (16 M), which is soluble only in
the benzene phase. Visible irradiation of the organic compartment
offers the advantage of selectively exciting ZnTPP, thus preventing
any direct absorption by" while restoring. The photoreduction
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